B1-phytoprostanes trigger plant defense and detoxification responses.

نویسندگان

  • Christiane Loeffler
  • Susanne Berger
  • Alexandre Guy
  • Thierry Durand
  • Gerhard Bringmann
  • Michael Dreyer
  • Uta von Rad
  • Jörg Durner
  • Martin J Mueller
چکیده

Phytoprostanes are prostaglandin/jasmonate-like products of nonenzymatic lipid peroxidation that not only occur ubiquitously in healthy plants but also increase in response to oxidative stress. In this work, we show that the two naturally occurring B(1)-phytoprostanes (PPB(1)) regioisomers I and II (each comprising two enantiomers) are short-lived stress metabolites that display a broad spectrum of biological activities. Gene expression analysis of Arabidopsis (Arabidopsis thaliana) cell cultures treated with PPB(1)-I or -II revealed that both regioisomers triggered a massive detoxification and defense response. Interestingly, expression of several glutathione S-transferases, glycosyl transferases, and putative ATP-binding cassette transporters was found to be increased by one or both PPB(1) regioisomers, and hence, may enhance the plant's capacity to inactivate and sequester reactive products of lipid peroxidation. Moreover, pretreatment of tobacco (Nicotiana tabacum) suspension cells with PPB(1) considerably prevented cell death caused by severe CuSO(4) poisoning. Several Arabidopsis genes induced by PPB(1), such as those coding for adenylylsulfate reductase, tryptophan synthase beta-chain, and PAD3 pointed to an activation of the camalexin biosynthesis pathway that indeed led to the accumulation of camalexin in PPB(1) treated leaves of Arabidopsis. Stimulation of secondary metabolism appears to be a common plant reaction in response to PPB(1). In three different plant species, PPB(1)-II induced a concentration dependent accumulation of phytoalexins that was comparable to that induced by methyl jasmonate. PPB(1)-I was much weaker active or almost inactive. No differences were found between the enantiomers of each regioisomer. Thus, results suggest that PPB(1) represent stress signals that improve plants capacity to cope better with a variety of stresses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis.

12-oxo-phytodienoic acid and several phytoprostanes are cyclopentenone oxylipins that are formed via the enzymatic jasmonate pathway and a nonenzymatic, free radical-catalyzed pathway, respectively. Both types of cyclopentenone oxylipins induce the expression of genes related to detoxification, stress responses, and secondary metabolism, a profile clearly distinct from that of the cyclopentanon...

متن کامل

Cyclopentenone isoprostanes induced by reactive oxygen species trigger defense gene activation and phytoalexin accumulation in plants.

Lipid peroxidation may be initiated either by lipoxygenases or by reactive oxygen species (ROS). Enzymatic oxidation of alpha-linolenate can result in the biosynthesis of cyclic oxylipins of the jasmonate type while free-radical-catalyzed oxidation of alpha-linolenate may yield several classes of cyclic oxylipins termed phytoprostanes in vivo. Previously, we have shown that one of these classes...

متن کامل

Oxylipin signaling in plant stress responses.

Oxidized fatty acids, termed oxylipins, are an important class of signaling molecule in plants, especially related to plant stress responses and innate immunity. The bestcharacterized oxylipins are jasmonic acid (JA) and its immediate precursor 12-oxophytodienoic acid (OPDA), which are formed enzymatically and accumulate in response to various stresses, in particular wounding and pathogen infec...

متن کامل

Facile synthesis of cyclopentenone B1- and L1-type phytoprostanes

Phytoprostanes (PhytoPs) represent non-enzymatic metabolites of α-linolenic acid (ALA), the essential omega-3 polyunsaturated fatty acid (PUFA) derived from plants. PhytoPs are present in the plant kingdom and represent endogenous mediators capable of protecting cells from oxidative stress damages in plants. Recently, it was found that such metabolites are present in cooking oil in high quantit...

متن کامل

Nonenzymatic lipid peroxidation reprograms gene expression and activates defense markers in Arabidopsis tocopherol-deficient mutants.

Tocopherols (vitamin E) are lipophilic antioxidants that are synthesized by all plants and are particularly abundant in seeds. Two tocopherol-deficient mutant loci in Arabidopsis thaliana were used to examine the functions of tocopherols in seedlings: vitamin e1 (vte1), which accumulates the pathway intermediate 2,3-dimethyl-5-phytyl-1,4-benzoquinone (DMPBQ); and vte2, which lacks all tocophero...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 137 1  شماره 

صفحات  -

تاریخ انتشار 2005